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Statistical mechanics of a multiconnected Hopfield neural-network model in a transverse field
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The Hopfield neural-network model with p-spin interactions in the presence of a transverse field is in-
troduced and solved exactly in the limit p— . In the phase diagrams drawn as a function of the tem-
perature, the important results such as reentrance are found, and the effects of the quantum fluctuations
on the phase transitions, the retrieval phase, and the storage ratio a are examined.

PACS number(s): 64.60.Cn, 87.10.+e¢, 75.10.Hk

In recent years there has been much interest in models
of neural networks, which attempt to explain intriguing
features such as memory, learning, and information
storage and retrieval in terms of the collective properties
of neural networks [1]. In particular, the Hopfield
neural-network model [2] has been investigated extensive-
ly by using statistical mechanics, and most of the proper-
ties of this model are fairly well understood [1,3]. A nat-
ural generalization of this model of associative memory is
the neural-network model with p-spin interactions [4-6],
which is reminiscent of a p-spin interaction spin-glass
model [7,8], and the large-p limit of the model is exactly
soluble [9,10] without using replicas.

In a previous paper [11], we have discussed the effects
of a transverse field I" on the phase diagram of a Hopfield
model with Hamiltonian H,

N
H=—-3J;8/S;—T 3 S, (1)

1
where S7 and S/ are Pauli spin matrices at ith spin and N
is the total number of neurons. The synaptic couplings
J;; are determined by the Hebb rule

Jij=N-1 Z 5%'7 s 2)
pu=1

which corresponds to the situation that aN patterns
{E',€% ... ,EN) are stored. In this assignment every &¥
is regarded as an independently distributed stochastic
variable, taking the values 1 with equal probabilities.
Our motivation to approach this quantum problem is to
consider the tunneling effects among the neurons
(represented by a transverse field I'), and is a theoretical
construct which introduces quantum effects to a classical
problem in a natural way. In this paper we consider a
transverse multiconnected Hopfield model which is the
quantum analog of the neural-network models with p-
spin interactions. We will be interested in particular in
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the p — oo limit, where the thermodynamics of the model
can be solved exactly. The effects of quantum fluctua-
tions on phase diagrams of the model are examined.
We consider the model with the Hamiltonian
H=— 3 J,»l,,-z,__”,SzSz ---S,-;—FES,-".
i .« l
(3)
Here the couplings J"p'z are given by a generalized

Hebb rule [4],

iy

Jil,iz,...,ip N"_l 2§ "‘§P, 4)

where the number of patterns is n =2N” ~a/p!, and a is
the storage ratio. When I'=0, this model is identical to
the generalization of the Hopfield model introduced by
Gardner [4]. For p =2 and I'=0 the model reduces to
the Hopfield neural-network model.

As usual, we introduce the effective Hamiltonian for
the ith spin,

H,=—h,S;—TS}, (5)
where the local field
h; =3i<- <i, J,-,,-z, ) ”’,-pm,zm,3 my and m; is the lo-

cal magnetization at site i. After dlagonahzmg H; the
partition function of a single spin is easily obtained,

Z =Trexp(—BH;)=2coshB(h?+T%)!/%, (6)

where B is the inverse temperature. The corresponding
magnetization per spin then reads

m;(h;,T)=h;(h}+T?) " 2tanhB(h}+T?)'/2 . (7

The overlap m* between stored patterns {&#} and system
state {m;} is defined by

mt=N"'S Em,(h;T) . (8)

For convenience we consider, as usual, only a pattern
{£}] to be condensed and the remaining (p —1) patterns
to have an overlap of at most order O(1/V'N ). This
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retrieval-state solution is described by the order parame-
1
term-,

m'=N"1'3 &lm;(n,,T), )

and the random overlap correlation is measured by the
order parameter 7,
2

1
=1 (10)
a

}n‘, N7'S &m;(h;,T)
>

i

In the thermodynamic limit N — o, Eq. (9) can be writ-
ten as an integral over the dxstrlbutlon of local fields
P(H"Y),

m'= [dH'P(H"Ym,H"T), (11

where H!=¢h,. The local alignment field H} on site i
can now be written as

1 " e FH o e,

m=FLE S 3 g gmm, o,
1 i< p
n

'y LA S g S g gm

B> iy <<
Xmy om,
(12)

The right-hand side of Eq (12) can be divided into two
parts: a signal term coming from the contrlbutlon of pat-
tern 1 to J; i, which is equal to p (m ') ™! and there-

iy, ..,

fore favors its recall and a noise term coming from the

contribution to J; i ; of all other patterns which has
Vg ey

mean zero and Gaussian fluctuations of variance o2,

p! o

NP1

0'2:}1

=2apq? !, (13)

> m}
i

where g =N ~!'S.m? is the usual spm-glass order param-
eter. Thus the d1str1but10n P(H") for the local fields is
given by the normalized Gaussian distribution

rEl— 1y —172
exp[ [H —pim ¥ ]], (14)

20?
where the variance o? is given by (13). Finally, the self-
consistent equations for the overlap m ! and the spin-glass
order parameter g are given by the following integrals
over the distribution of local fields P (H!):

mi= [ I /2 p(m'Y '+vVary
Vam ¢ YD o im PV ary ) 2
XtanhB{T?+[p(m !V "'+ Vary]?}1/2 (15)

1
P(H)=——=
) V2o

qu e“y2/2 y [p(ml)p-—l_'_‘/ay]Z
V2r T AT 4 [p(m P '+ Vary]?)
Xtanh’B{T?+[p (m Y ~'+Vary]2}1/2 (16)
r=2pgP 1. 17

The phase diagram of the model can be obtained from
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FIG. 1. The phase diagram of the systems in the large-p limit
for three values of I'. PM denotes the paramagnetic phase, R
the retrieval phase. Curves 1, 2, and 3 correspond to I'=0.2,
0.5, and 0.7, respectively.

Egs. (15)-(17), and the result reduces to those for the
generalized Hopfield neural-network model discussed by
Gardner [4] when I'=0. Without recourse to replicas,
approximate values of the maximum storage ratio o, as a
function of p can be obtained easily along the lines ana-
lyzed by Gardner [4]. However, we will restrict ourselves
in this paper to the p — o limit. In this limit, we consid-
er only retrieval states which are either fully correlated
with a specific input pattern 1 (m!=1,m#=0 for u+1)
or states which are uncorrelated with any pattern (m#*=0
for all p). This is because m* =<1 and it follows that
(m#y¥=1if m#=1 and (m*)*=0 otherwise. Similarly, »
can either be o (if ¢ =1) or O (otherwise). The resulting
phase diagram of the model is shown in Fig. 1. We find
that even an arbitrarily weak transverse field destroys the
spin-glass transitions which exist in the classical mul-
ticonnected Hopfield model [4]. This result is also in con-
trast to the Hopfield neural-network model in a trans-
verse field [11] where the weak transverse field does not
destroy completely the onset of spin-glass freezing transi-
tion. Quantum fluctuations have the effect of shrinking
the retrieval phase. With the increase of the strength of
transverse field I, the regions of the retrieval phases de-
crease, and when I'=1, the retrieval phases disappear.
Another interesting feature of the retrieval phases in the
presence of transverse fields I" (see Fig. 1) is that they all
show reentrant paramagnet behavior below a certain tem-
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FIG. 2. Values of the maximum storage ratio a, as a func-
tion of T'.
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perature contrary to that found for the phase diagram of
the quantum Hopfield model in a transverse field [11].
This reentrant behavior may be attributed to the com-
petition between quantum effects and random-pattern-
induced fluctuations. The maximum value of storage ra-
tio a, is obtained at a certain nonzero temperature which
is located above the zero temperature critical value
a (T =0) for the classical cases. This obviously implies
that the network can store more patterns at finite temper-
atures than at zero temperature. Figure 2 shows the
dependence of the maximum storage ratio a, on the
transverse field I".

So far, the multiconnected Hopfield neural-network
model has been generalized to the quantum case and

solved by using a simple method without the use of repli-
cas. The phase diagram is obtained in the limit p — o,
and the effects of quantum fluctuations on the phase tran-
sitions are examined. Our conclusion is that the trans-
verse field, even if it is arbitrarily weak, destroys the
spin-glass phase transitions in multiconnected Hopfield
models when p — «. Reentrant phase transitions, which
may be caused by the competition between quantum
effects and the random overlap correlations, occur with
nonzero values of transverse fields.
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